Large-area zinc oxide nanorod arrays templated by nanoimprint lithography: control of morphologies and optical properties.

نویسندگان

  • Chen Zhang
  • Xiaohu Huang
  • Hongfei Liu
  • Soo Jin Chua
  • Caroline A Ross
چکیده

Vertically aligned, highly ordered, large area arrays of nanostructures are important building blocks for multifunctional devices. Here, ZnO nanorod arrays are selectively synthesized on Si substrates by a solution method within patterns created by nanoimprint lithography. The growth modes of two dimensional nucleation-driven wedding cakes and screw dislocation-driven spirals are inferred to determine the top end morphologies of the nanorods. Sub-bandgap photoluminescence of the nanorods is greatly enhanced by the manipulation of the hydrogen donors via a post-growth thermal treatment. Lasing behavior is facilitated in the nanorods with faceted top ends formed from wedding cakes growth mode. This work demonstrates the control of morphologies of oxide nanostructures in a large scale and the optimization of the optical performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid fabrication of ZnO nanorod arrays with controlled spacing by micelle-templated solvothermal growth.

We present a facile method for the synthesis of nanorod arrays over large areas with fine control over the average rod-rod spacing. Block copolymer micelles are used to template solvothermal synthesis of ZnO nanorods by preferentially enabling reactant diffusion through the micelle cores to an underlying seed layer. The distance between nanorod centers is defined by the micelle number density w...

متن کامل

Controllable growth of ZnO nanorod arrays with different densities and their photoelectric properties

Since the photoelectric response and charge carriers transport can be influenced greatly by the density and spacing of the ZnO nanorod arrays, controlling of these geometric parameters precisely is highly desirable but rather challenging in practice. Here, we fabricated patterned ZnO nanorod arrays with different densities and spacing distances on silicon (Si) substrate by electron beam lithogr...

متن کامل

A Study on ZnO Nanorod Arrays Formed on the Surface of Polyester Fabric

A feasibility study on the possible growth of rod-shaped nano size zinc oxide particles on the surface of polyester fabric was investigated. The nanoparticles were produced using a hydrolysis method, with a zinc compound being utilized as the starter material. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) and X-ray d...

متن کامل

Aluminum- and Iron-Doped Zinc Oxide Nanorod Arrays for Humidity Sensor Applications

Metal-doped zinc oxide (ZnO) nanorod arrays have attracted much attention due to improvement in their electrical, structural, and optical properties upon doping. In this chapter, we discuss the effects of aluminum (Al)and iron (Fe)-doping on ZnO nanorod arrays properties particularly for humidity sensor applications. Compared to Fe, Al shows more promising characteristics as doping element for ...

متن کامل

Synthesis, characterization and investigation of optical and photocatalytic properties of zinc oxide nanoparticles in three different rod, spherical and sheet morphologies

In the present study, zinc oxide nanoparticles in three different forms (spherical, rod and sheet) were synthesized by a hydrothermal method. The obtained products were characterized by X-ray diffraction (XRD), filed emission scanning electron microscopy (FESEM), EDX elemental analysis and UV-Vis spectroscopy. The photocatalytic properties were investigated using congo red (CR) degradation unde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 27 48  شماره 

صفحات  -

تاریخ انتشار 2016